The Vision
By 2025, America’s farms, forests and ranches will provide 25 percent of the total energy consumed in the United States, while continuing to produce safe, abundant and affordable food, feed and fiber.

A National Study
An economic analysis conducted by researchers at the University of Tennessee on behalf of the 25x’25 Initiative outlines the impact of potential energy policy on America’s farmers and foresters through the implementation of a national Renewable Electricity Standard (RES). The study provides information on land use change, feedstock production, feedstock prices, farm income, carbon costs, payments for producers, and resulting national economic impacts.

The study assumes that the agriculture and forestry community are already working to meet the needs of the 36 billion gallon national Renewable Fuels Standard (RFS2) by 2022, a component of the Energy Independence and Security Act (EISA) enacted by Congress in 2007. The study evaluates a 25 percent RES to be met by 2025; however, with exceptions for small power retailers, hydropower sales, municipal solid waste sales and energy efficiency credits, the effective RES is 17 percent by 2025.

Key Results from the National Study:

- Economic net returns to agriculture are projected to be positive in the EISA+RES Scenario compared with the baseline and widespread across the United States;
- Positive national economic impacts are projected to provide $215 billion of additional economic activity, the creation of over 700,000 jobs, and $84 billion added to the nation’s GDP;
- Net carbon emissions are reduced under the EISA+RES Scenario, but the environmental performance with regard to carbon is slightly less effective than under EISA alone;
- There will not be major shifts in commodity cropland use or major changes in crop and livestock prices.

What Do These Mean?

Biofuel: Any liquid fuel produced from biomass. Biofuels sometimes are referred to as renewable fuels. However, renewable fuels also include biogas.

Biomass: Any biological matter that is available on a renewable or recurring basis, including agricultural crops and trees, wood and wood wastes and residues, plants (including aquatic plants), grasses, residues, fibers, and animal wastes, municipal wastes, and other waste materials.

Feedstock: Any crop grown to provide the raw material for producing biofuels, electricity, or other energy or biobased application or product.

RES: A renewable electricity standard—also referred to as a renewable portfolio standard (RPS)—requires certain electricity retailers to provide a minimum specified share of their total electricity sales from qualifying renewable power generation. RES policies can incorporate market-based mechanisms that enable obligated entities to buy or sell tradable renewable energy certificates (RECs) to demonstrate compliance.

Total Industry Output (TIO): the value of production across all industries in a region.

Woody biomass: Any material produced by trees, bushes and shrubs in any form of processing (chips, sawdust, leaves, needles, etc.).

Under the EISA+RES Scenario, in 2025, positive agricultural net returns are scattered across the United States.

Opportunities for Louisiana

This study estimates that by 2025, Louisiana’s net farm income will increase $95.49 million more than with the RFS2 alone. In meeting the RES, the agriculture and renewable energy sectors will provide positive economic impacts to the state economy, including a total industry output (TIO) of $1.98 billion, and 624 new jobs in 2025. When multiplier effects are included TIO and jobs increase to $2.97 billion and 7,572, respectively.

Electricity Production

Under a properly constructed RES, by 2025, Louisiana could produce as much as 13.2 billion kWh of additional renewable electricity from biomass. A breakdown of this production by biomass feedstock is shown in the figure to the right.

Land Use Impacts

An increasing demand for biomass feedstocks for energy production in Louisiana will cause shifts in land use and the addition of new dedicated energy crops like switchgrass and fast growing trees like poplar. By 2025, an estimated 865,630 acres of dedicated energy crops are projected. For most states, the demand for bioenergy feedstocks will cause shifts to more intensely managed pasture land. Forest residues, thinnings and tree harvest will also play a significant role in meeting feedstock demands.

State Data Sheet

The accompanying data sheet provides detailed results from the national study at the state level for Louisiana. The change in net farm income expresses the projected impacts of an RES in addition to the changes in farm income from the EISA baseline. These numbers may appear insignificant in the short term, but increase as demand for biomass increases. The figures on land use change show acres planted and the change in acres planted as compared to the number of acres planted in the baseline. The estimated economic impacts of the agriculture and renewable energy sectors on the state economy are presented. Agricultural economic impacts represent the land based impacts of renewable energy development, such as biomass feedstock production, wind lease payments, and electricity generation income from methane digesters. Renewable energy impacts represent the impacts of the development of a renewable energy industry, such as feedstock consumption, energy plants, and manufacturing.

By 2025, a properly constructed RES in Louisiana could result in:

- $95.49 M increase in net farm income over an RFS2 alone
- $2.97 B increase in total economic impacts
- 7,572 additional jobs

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Stover</td>
<td>0.0</td>
<td>7.4</td>
<td>133.3</td>
</tr>
<tr>
<td>Wheat Straw</td>
<td>0.0</td>
<td>0.0</td>
<td>9.7</td>
</tr>
<tr>
<td>Livestock*</td>
<td>663.9</td>
<td>664.6</td>
<td>665.6</td>
</tr>
<tr>
<td>Woody Biomass</td>
<td>1109.4</td>
<td>775.0</td>
<td>5996.2</td>
</tr>
<tr>
<td>Energy Crop</td>
<td>64.4</td>
<td>660.8</td>
<td>4863.1</td>
</tr>
<tr>
<td>Byproduct Ethanol**</td>
<td>678.2</td>
<td>1411.0</td>
<td>1535.6</td>
</tr>
<tr>
<td>Total Biomass</td>
<td>2516.0</td>
<td>3518.8</td>
<td>13203.5</td>
</tr>
</tbody>
</table>

* Livestock consists of methane digesters plus any manure used for co-firing for electricity production.
** Byproduct ethanol values originate from the use of lignin to produce energy at the biorefinery.

Contact Information:
25x'25
1430 Front Ave., Lutherville, MD 21093
ph: 410-252-7079
info@25x25.org www.25x25.org

Department of Agricultural Economics
2621 Morgan Circle
The University of Tennessee, Knoxville, TN 37996-4518
ph: 865-974-3716

University of Tennessee Team:
Burton English/Daniel De La Torre Ugarte/Chad Hellwinckel/Kimberly Jensen/R. Jamey Menard/Tristram O. West/Christopher Clark
benglish@utk.edu/danieltu@utk.edu/chellwinckel@utk.edu/kjensen@utk.edu/jmenard@utk.edu/twest@utk.edu/cclark@utk.edu